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This on-line appendix contains additional analysis and the proofs of our propositions.

A1. Additional Analysis and Results

A1.1. Balanced Steady State

In Section 3. we considered a simple numerical example with only two characteristics (N = 2),

which led to types ⇥ = {(0, 0), (0, 1), (1, 0), (1, 1)}. In that section, we showed that when

⇢ < ⇢(�, N) and the initial population of referees is only from the M -group, �✓,m
0 = p✓,m,

then the dynamics never converges. Here we now consider a di↵erent initial condition.

Indeed, the dynamics of the mass of each type depends upon their frequencies in the

population of young researchers, pm and pf , as well as the initial conditions �0. In particular,

suppose that the initial mass of referees is composed of M - and F -researchers in equal

proportions: �0 = 1
2pm + 1

2pf . One implication is that then the two M -prevalent and F -

prevalent types ✓m = (1, 0) and ✓f = (0, 1) both represent 34% of the initial mass of referees,

whereas the other two types (0, 0) and (1, 1) each represent 16% of the initial population.

While we can no longer invoke the results in Sections 2.2.-2.5., we can plot the dynamics

of the fractions of established M - and F -researchers, as well as those of established M -and

F -researcher types. (Theorem A.1 in the Appendix characterizes the limiting behavior of

the system for arbitrary initial conditions and type distributions.)

Figures A.1 and A.2 display the results. The figures are self explanatory: an equal

proportion of M - and F -researchers is maintained throughout. However, importantly, type

✓f (resp. ✓m) will eventually become prevalent among F -researchers (resp. M -researchers),

which means that established F - (resp. M -) economists are oversampled from those who
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Figure A.1: Fraction of M and F researchers with Start from Equal Proportions

Fraction of M and F researchers when �0 = 1
2pm + 1

2pf . Parameters: � = 0.8, �0 = 0.2, ⇢ = 4,
N = 2.

Figure A.2: Types of Established F and M Researchers with Start from Equal Proportions

(a) F researchers (b) M researchers

Types of established F (left) and M (right) researchers. We show types ✓⇤ = (1, 1, ...., 1),
✓m = (1, ..., 1, 0, ..., 0), and ✓f = (0, ..., 0, 1, ..., 1). Initially �0 = 1

2pm + 1
2pf . Parameters:

� = 0.8, �0 = 0.2, ⇢ = 4, N = 2.

possess characteristic 2 (resp. 1). Furthermore, the e�cient type ✓⇤ will disappear in the

limit.
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A1.2. Seniors and Juniors

In Section 6. we extended the basic model to include di↵erent levels of seniorities in the

established set of researchers, with seniors evaluating juniors before accepting them into

their group, and both seniors and juniors evaluating the young researchers. The analysis is

substantially more complex in this case, and we only rely on numerical simulations. The

following cases add up to the one discussed in the body of the paper.All the simulations in

this section assume equal fractions of juniors and seniors (� = 0.5).

First, the presence of a second screening—and hence a second opportunity for self-image

bias to exert its influence—can exacerbate group imbalance in the senior rank, at least in the

short run. Figure A.3 demonstrates this. Model parameters are as in Figure 2, so in a single-

cohort environment significant group imbalance emerges. The same is true with two ranks;

however, in the short run, the imbalance is more pronounced in the senior rank. The reason

is that, in order to be promoted to the senior rank, a researcher must match with a referee of

the same type twice. Initially, both junior and senior referees have the same type distribution,

which by assumption coincides with that of M researchers. Hence, whatever e↵ect is present

at the junior rank is compounded at the senior rank.1 The di↵erence between the two ranks

vanishes in the long run because, as type ✓m becomes prevalent among established juniors

and seniors, promotion eventually is driven solely by objective research quality—matching

with a senior reviewer of the junior candidate’s own type is virtually guaranteed.

A more pronounced group imbalance can also arise, in the short / medium run, for

parameter values for which convergence is eventually attained. This is demonstrated in

Figure A.4, where we take � = 0.6 rather than � = 0.8. Again, the need to match with a

like type twice, coupled with the assumption that the initial population consists entirely of

M -researchers, leads to a lower representation of F researchers at the senior rank. However,

over time, type ✓⇤ prevails among juniors and seniors, so matching with like types is virtually

guaranteed; and since convergence is attained amongst juniors, it must obtain among seniors

as well.

A1.3. Similarity in Research Characteristics

In this section we extend the model to investigate the case in which referees accept researchers

who have characteristics close but not necessarily identical to their own. In particular, we

1In fact, the bias becomes stronger over time at the senior rank. The reason is that the initial population of
junior candidates up for promotion is characterized by types distributed as among male researchers, whereas
the initial population of young researchers applying for a junior position is balanced.
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Figure A.3: More extreme imbalance for senior rank

Fraction of senior and junior M and F researchers when �0 = pm. Parameters: � = 0.8,
�0 = 0.2, ⇢ = 4, N = 2.

Figure A.4: Convergence, but greater short-run imbalance among seniors

Fraction of senior and junior M and F researchers when �0 = pm. Parameters: � = 0.6,
�0 = 0.2, ⇢ = 4, N = 2.
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assume that referee r of type ✓r accepts the research of young researcher ✓ if

D(✓r, ✓) =
X

n

(✓rn � ✓n)
2  ⌘ (A.28)

where ⌘ is a non-negative integer. That is, referee ✓r treats candidate ✓ as “close enough” if

it di↵ers from his or her own type in no more than ⌘ characteristics.

Our models so far correspond to ⌘ = 0. If instead ⌘ > 0, the dynamics for �✓
t are still as

in Eq. (7), but the mass a✓,gt of accepted researchers of type ✓ in group g 2 {f,m} is given

by

a✓,gt = �✓
X

✓r:D(✓r,✓)⌘

�✓r

t�1 p
✓,g (A.29)

Unfortunately, obtaining general analytical results in this case seems di�cult. Therefore, we

consider illustrative special cases.

A1.3.1. Connected Set of Types

The set ⇥ of types we have considered so far enjoys a special structure that is relevant to the

relaxed definition of “acceptance” in Eq. (A.28). For every ⌘ � 1, and every pair ✓, ✓0 2 ⇥,

there is a finite ordered list ✓1, . . . , ✓K 2 ⇥ such that ✓1 = ✓, ✓K = ✓0, and D(✓k, ✓k+1)  ⌘ for

all k = 1, . . . , K � 1. In this sense, we say that ⇥ = {0, 1}N is ⌘-connected for every ⌘ � 1.

Of course, being 1-connected implies being ⌘-connected for ⌘ > 1; we shall see in the next

subsection that a subset of {0, 1}N may be ⌘-connected for some ⌘ > 1, but for any smaller

integer ⌘0 (including ⌘0 = 1).

With ⇥ = {0, 1}N , and for the parameter values used in the examples of Sections 3.

and 4., the relaxed acceptance criterion in Eq. (A.28) leads to convergence. For instance,

Figure A.5 illustrates the parameterization used in Section 4.. The dashed lines represent the

benchmark case ⌘ = 0, where there is no convergence. The dotted lines reflect the assumption

that referees accept young researchers that are closely similar to them: specifically, taking

⌘ = 1. Notably, group balance obtains. (The solid lines are discussed in the next section.)

Moreover, we have not been able to find parameterizations for which convergence did not

occur. We conjecture that this is a general property of the special structure of the type space

⇥ = {0, 1}N . Intuitively, a referee of type ✓ accepts a positive mass of young researchers of

similar, but not identical type ✓0; these become referees in the following period, and accept a

positive mass of young researchers of type ✓00 that type-✓ referees would reject; and so on. A

contagion argument suggests that, in the limit, the impact of self-image bias should vanish,

so that group balance should emerge.
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Figure A.5: Fraction of M and F Researchers under the Research Similarity Assumption

Fraction of M and F researchers when �0 = pm. Parameters: � = 0.5742, which implied
d = 0.3, �0 = 0.2, ⇢ = 4, N = 10, and, under research similarity, ⌘ = 1.

A1.3.2. Disconnected Set of Types

A subset of {0, 1}N may well be ⌘-disconnected for some ⌘. For a trivial example, {✓m, ✓f}
is (N � 1)-disconnected, because each of the N coordinates of ✓f is di↵erent from the corre-

sponding coordinate of ✓f . A fortiori, it is ⌘-disconnected for every ⌘  N � 1.

Intuition suggests that the contagion argument given above breaks down with a discon-

nected set of types. We now verify this intuition. The solid lines in Figure A.5 represent the

same parameterization as in the previous subsection, with ⌘ = 1, but applied to a state space

⇥ obtained by randomly removing 15% of the elements of {0, 1}N and suitably renormalizing

probabilities. As expected, the system does not attain group balance in the limit.

A1.3.3. Endogenous Entry

Finally, return to the case in which ⇥ = {0, 1}N (a connected set of types) but consider

endogenous entry, as in Section 5.. In this case, even if the connected set of types would lead

to convergence (see subsection A1.3.1.), the endogenous entry prevents such convergence, as

shown in Section 5.1.1.. This is shown in Figure A.6. Again, the dashed lines and the dotted

lines show the total fraction of M - and F -researchers in the benchmark case (⌘ = 0) and,
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Figure A.6: Fraction of M and F Researchers under Research Similarity and Endogenous
Entry

Fraction of M and F researchers when �0 = pm. Parameters: � = 0.5742, which implied
d = 0.3, �0 = 0.2, ⇢ = 4, N = 10, and, under research similarity, ⌘ = 1.

respectively, the research similarity case (⌘ = 1). The solid lines now show the the fraction

of M - and F -researchers under research simularity (⌘ = 1) but with endogenous entry. The

intuition is the same as the one given in Section 5..

In sum, this section suggests that the main results of the paper are robust to a weaker

assumption about the referees’ selection mechanism.

A2. Co-authorship

This section briefly explores the implications of our model’s dynamics for inferences about

the relative (objective) quality of coauthors in a joint project.

We show that, consistently with the findings in Sarsons et al. (2021), if research co-

authored by a young M -researcher and a young F -researcher is accepted, then the expected

quality of the M -researcher is higher. For simplicity, we consider an economy that has

reached its steady state, and such that only types ✓m and ✓f are represented in the population

of established scholars. Hence, a joint research project is accepted if and only if its vector of

characteristics is ✓m or ✓f .
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Proposition A.1 Let the economy be at its steady state with only types ✓f and ✓m sur-

viving. For each researcher of type ✓, define L(✓) =
PN

n=1 ✓n its objective quality. Let a

research that is coauthored by type ✓a and ✓b be of type ✓ = ✓a _ ✓b, where _ denotes

the component-wise maximum. Let researcher a 2 M and b 2 F . Then, conditional on

acceptance of the joint work, i.e. ✓a _ ✓b 2 {✓m, ✓f}, we have

E[L(✓a)|✓a _ ✓b 2 {✓m, ✓f}] > E[L(✓b)|✓a _ ✓b 2 {✓m, ✓f}]

The intuition of the result is that referees are more frequently of type ✓m, and, in addition,

✓m is more frequent in theM population than in the F population. It follows that conditional

on the joint work being accepted, it is then more likely it is due for the M characteristics

than the F characteristics.

Proof of Proposition A.1 Let ✓a and ✓b be the types of the two young researchers. We

assume that the type of the joint project is the elementwise maximum of ✓a and ✓b: that is,

the project displays characteristics i if and only if at least one of the researchers displays it.

For g = m, f , let ⇥g = {(✓, ✓0) : ✓ _ ✓0 = ✓g}, where _ denotes the component-wise

maximum. Note that, if (✓, ✓0) 2 ⇥m, then ✓i = ✓0i = 0 for i = N/2 + 1, . . . , N ; similarly,

if (✓, ✓0) 2 ⇥f , then ✓i = ✓0i = 0 for i = 1, . . . , N/2. Moreover, (✓, ✓0) 2 ⇥g i↵ (✓0, ✓) 2 ⇥g

for g = m, f . Finally, (✓, ✓0) 2 ⇥m if and only if (✓̄, ✓̄0) 2 ⇥f , where ✓̄, ✓̄0 are defined by

✓̄i+N/2 = ✓i, ✓̄0i+N/2 = ✓0i and ✓̄i = ✓̄0i = 0 for i = 1, . . . , N/2; furthermore, these types satisfy

p✓,m = p✓̄,f and p✓
0,f = p✓̄

0,m. (A.30)

Then, invoking the above properties, the probability that the joint project is accepted—
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that is, the probability that ✓a _ ✓b 2 {✓m, ✓f}—is

�✓m�̄✓m
X

(✓,✓0)2⇥m

p✓,m · p✓0,f + �✓f �̄✓f
X

(✓,✓0)2⇥f

p✓,m · p✓0,f

=�✓m�̄✓m
X

(✓,✓0)2⇥m

p✓,m · p✓0,f + �✓f �̄✓f
X

(✓,✓0)2⇥m

p✓̄,m · p✓̄0,f

=�✓m�̄✓m
X

(✓,✓0)2⇥m

p✓,m · p✓0,f + �✓f �̄✓f
X

(✓0,✓)2⇥m

p✓̄
0,m · p✓̄,f

=�✓m�̄✓m
X

(✓,✓0)2⇥m

p✓,m · p✓0,f + �✓f �̄✓f
X

(✓0,✓)2⇥m

p✓
0,f · p✓,m

=�✓m�̄✓m
X

(✓,✓0)2⇥m

p✓,m · p✓0,f + �✓f �̄✓f
X

(✓,✓0)2⇥m

p✓,f · p✓0,m

=(�✓m�̄✓m + �✓f �̄✓f )
X

(✓,✓0)2⇥m

p✓,m · p✓0,f

=�0⇢
N/2

X

(✓,✓0)2⇥m

p✓,mp✓
0,f ⌘ �0⇢

N/2⇧,

where the last equality follows from the definition of �✓ and the fact that ✓m, ✓f are the only

surviving types.

Now let L(✓) =
P

i ✓i. We claim that the expectation of L(✓a) � L(✓b) conditional on

✓a _ ✓b 2 {✓m, ✓f} is strictly positive—that is, the expected quality of a, the young M

coauthor, is strictly higher than the expected quality of that of the young F coauthor b.

First,

� ⌘
X

(✓,✓0)2⇥m

p✓,m · p✓0,f [L(✓)� L(✓0)]

=
X

(✓,✓0)2⇥m:L(✓)>L(✓0)

p✓,m · p✓0,f [L(✓)� L(✓0)] +
X

(✓,✓0)2⇥m:L(✓)<L(✓0)

p✓,m · p✓0,f [L(✓)� L(✓0)]

=
X

(✓,✓0)2⇥m:L(✓)>L(✓0)

[p✓,m · p✓0,f � p✓
0,m · p✓,f ][L(✓)� L(✓0)] > 0.

The last equality follows because (✓, ✓0) 2 ⇥m if and only if (✓0, ✓) 2 ⇥m, and of course

L(✓) > L(✓0) i↵ L(✓0) < L(✓). The inequality follows because, if L(✓) > L(✓0), then by

assumption p✓,m > p✓
0,m and p✓

0,f > p✓,f .

Repeating the calculations for ⇥f and again appealing to the properties of pairs (✓, ✓0) 2

9



⇥m and the corresponding types (✓̄, ✓̄0) 2 ⇥f ,

X

(✓,✓0)2⇥f

p✓,m · p✓0,f [L(✓)� L(✓0)] =
X

(✓,✓0)2⇥f :L(✓)>L(✓0)

[p✓,m · p✓0,f � p✓
0,m · p✓,f ][L(✓)� L(✓0)]

=
X

(✓,✓0)2⇥m:L(✓)>L(✓0)

[p✓̄,m · p✓̄0,f � p✓̄
0,m · p✓̄,f ][L(✓̄)� L(✓̄0)]

=
X

(✓,✓0)2⇥m:L(✓)>L(✓0)

[p✓,f · p✓0,m � p✓
0,f · p✓,m][L(✓)� L(✓0)] =

=�
X

(✓,✓0)2⇥m

p✓,m · p✓0,f [L(✓)� L(✓0)] = ��.

Finally, the expected di↵erence in the number of characteristics of ✓a and ✓b is

E[L(✓a)� L(✓b)|✓a _ ✓b 2 {✓m, ✓f}] = �✓m�̄✓m�� �✓f �̄✓f�

�0⇢N/2⇧
=

⇢N/2�

⇧
(�̄✓m � �̄✓f ) > 0,

as asserted.

Q.E.D

A3. Proofs

We first characterize key features of the population dynamics for an arbitrary, finite set ⇥

of types, with initial distribution �0 2 �(⇥), such that �0 = �m
0 + �f

0 for �m
0 ,�

f
0 2 R⇥

+, and

per-period inflows qg = (q✓,g)✓2⇥ 2 R⇥
+ \ {0}, for g 2 {f,m}. It is also convenient to define

q = qm + qf . Then, for g 2 {f,m}, the dynamics are given by

�✓,g
t = �✓,g

t�1

 
1�

X

✓0

�✓0

t�1q
✓0

!
+ �✓

t�1q
✓,g (A.31)

�✓
t = �✓,m

t + �✓,f
t . (A.32)

The body of the paper focuses on the special case q✓,m = �✓p✓,m, q✓,f = �✓p✓,f .

Theorem A.1 Assume that q✓  1 for all ✓ 2 ⇥. Then, for all t � 0, �t 2 �(⇥), and

�m
t ,�

f
t 2 R⇥

+. Moreover:

1. if �✓
0 = 0, then �✓

t = 0 for all t � 0;

2. if �✓
0 > 0, then �✓

t > 0 for all t � 0;
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3. for ✓, ✓̃ 2 ⇥ with �✓
0 · �✓̃

0 > 0:

(a)
�✓
t

�✓
t�1

� �✓̃
t

�✓̃
t�1

= q✓ � q✓̃ for all t � 1, and

(b) q✓ > q✓̃ implies
�✓
t

�✓̃
t

! 1, and q✓ = q✓̃ implies
�✓
t

�✓̃
t

= �̄✓
o

�̄✓̃
o
for all t � 0;

4. define the set

⇥max = {✓ 2 ⇥ : �✓
0 > 0, ✓ 2 argmax

✓02⇥
q✓

0} (A.33)

and let �̄ 2 �(⇥) be such that

�̄✓̃ =

(
�✓̃
0P

✓2⇥max �✓
0

✓̃ 2 ⇥max

0 ✓̃ 62 ⇥max :
(A.34)

then limt!1 �t = �̄;

5. define

�̄✓̃,f =

(
�✓̃
0q

✓̃,f
P

✓2⇥max �✓
0q

✓ ✓̃ 2 ⇥max

0 ✓̃ 62 ⇥max
and �̄✓̃,m =

(
�✓̃
0q

✓̃,m
P

✓2⇥max �✓
0q

✓ ✓̃ 2 ⇥max

0 ✓̃ 62 ⇥max :
(A.35)

then limt!1 �f
t = �̄f

and limt!1 �m
t = �̄m

.

Proof: Eqs. (A.31) and (A.32) imply that

�✓
t =

 
1�

X

✓02⇥

�✓0

t�1q
✓0

!
�✓
t�1 + �✓

t�1q
✓. (A.36)

By assumption �0 2 �(⇥). Inductively, suppose �t�1 2 �(⇥) and �m
t�1,�

f
t�1 2 R⇥

+.

Summing over ⇥ on both sides of Eq. (A.36) yields
P

✓ �
✓
t = (1 �

P
✓0 �

✓0
t�1q

✓0)(
P

✓ �
✓
t�1) +P

✓ �
✓
t�1q

✓ = (1�
P

✓0 �
✓0
t�1q

✓0)+
P

✓ �
✓
t�1q

✓ = 1. Furthermore, since �t�1 2 �(⇥),
P

✓0 �
✓0
t�1q

✓0 2
[min✓0 q✓

0
,max✓0 q✓

0
] ✓ [0, 1]; moreover, q✓ � 0 and �✓

t�1 � 0, so Eq. (A.36) implies that

�✓
t � 0 as well. By the same argument, q✓ � 0 and �✓,g

t�1 � 0 for g 2 {f,m} imply �✓,g
t � 0

for g 2 {f,m} as well by Eq. (A.31). Thus, �t 2 �(⇥), and �g
t 2 R⇥

+ for each g.

Claim 1 is immediate. For Claim 2, again we argue by induction. For t = 0, the claim

is trivially true. Inductively, assume �✓
t�1 > 0. By Eq. (A.36), since as was just shown

1 �
P

✓0 �
✓0
t�1q

✓0 � 0, and the inductive hypothesis implies that �✓
t�1 > 0, if q✓ > 0 then

�✓
t � �✓

t�1q
✓ > 0. Suppose instead q✓ = 0. If

P
✓0 �

✓0
t�1q

✓0 = 1, then, since q✓
0  1 for all

✓0 by assumption, and �t�1 2 �(⇥), it must be that �✓0
t�1 > 0 implies q✓

0
= 1: but then

�✓
t�1 = 0, which contradicts the inductive hypothesis. Thus, 0 

P
✓0 �

✓0
t�1q

✓0 < 1, so Eq.

(A.36) implies that �✓
t =

�
1�

P
✓0 �

✓0
t�1q

✓0
�
�✓
t�1 > 0.
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For Claim 3, divide both sides of Eq. (A.36) for type ✓ by �✓
t�1, which is assumed to be

positive; this yields
�✓
t

�✓
t�1

= 1 + q✓ �
X

✓0

�✓0

t�1q
✓0 . (A.37)

A similar equation holds for ✓̃. This immediately yields 3(a). To derive 3(b), since �✓0
t =

�✓0
0 ·
Qt

s=1
�✓0
s

�✓0
s�1

for ✓0 = ✓, ✓̃,

�✓
t

�✓̃0
t

=
�✓
0

�✓̃
0

·

Qt
s=1

�✓
s

�✓
s�1

Qt
s=1

�✓̃
s

�✓̃
s�1

=
�✓
0

�✓̃
0

·
tY

s=1

�✓
s

�✓
s�1

�✓̃
s

�✓̃
s�1

=
�✓
0

�✓̃
0

·
tY

s=1

�✓̃
s

�✓̃
s�1

+ q✓ � q✓̃

�✓̃
s

�✓̃
s�1

=
�✓
0

�✓̃
0

·
tY

s=1

0

B@1 +
q✓ � q✓̃

�✓̃
s

�✓̃
s�1

1

CA .

If q✓ = q✓̃, then every term in parentheses equals 1, and the claim follows. If instead q✓ > q✓̃,

recall that, by Eq. (A.37), for all s � 1, since �s�1 2 �(⇥) and q 2 [0, 1]|⇥|, �✓̃
s

�✓̃
s�1

 1 + q✓̃.

Therefore, each term in parentheses is not smaller than 1 + q✓�q✓̃

1+q✓̃
> 1. It follows that

�✓
t

�✓̃0
t

=
�✓
0

�✓̃
0

·
tY

s=1

0

B@1 +
q✓ � q✓̃

�✓̃
s

�✓̃
s�1

1

CA � �✓
0

�✓̃
0

·
 
1 +

q✓ � q✓̃

1 + q✓̃

!t

! 1.

For Claim 4, consider first ✓̃ 62 ⇥max, and fix ✓ 2 ⇥max arbitrarily. Then �✓
t

�✓̃
t

! 1 by

Claim 3(b). Suppose that there is a subsequence (�t(`))`�0 such that �✓̃
t(`) � ✏ for some ✏ > 0

and all ` � 0. Since
�✓
t(`)

�✓̃
t(`)

! 1 as well, there is ` large enough such that
�✓
t(`)

�✓̃
t(`)

> 1
✏ : but then

⇤✓
t(`) > 1 for such `: contradiction. Thus, for every ✏ > 0, eventually �✓̃

t < ✏: that is, �✓̃
t ! 0.

Next, consider ✓̃ 2 ⇥max. By Claim 2, �✓̃
t > 0 and

P
✓2⇥max �✓

t > 0, and

�✓̃
tP

✓2⇥max �✓
t

=
1

P
✓2⇥max

�✓
t

�✓̃
t

=
1

P
✓2⇥max

�✓
0

�✓̃
0

=
�✓̃
0P

✓2⇥max �✓
0

= �̄✓̃,

where the third inequality follows from Claim 3(b). Therefore,

�✓̃
t =

�✓̃
tP

✓2⇥max �✓
t

·
 
X

✓2⇥max

�✓
t

!
= �̄✓̃ ·

 
1�

X

✓ 62⇥max

�✓
t

!
! �̄✓̃,

because, as was just shown above, �✓
t ! 0 for ✓ 62 ⇥max.

Finally, consider Claim 5. Fix g 2 {f,m}. First, since 0  �✓,g
t  �✓

t for all t � 0, if

✓ 62 ⇥max then by Claim 4 �✓
t ! �̄✓ = 0, and so �✓,g

t ! 0 = �̄✓,g as well. Thus, focus on the

case ✓ 2 ⇥max, so that by Claim 4 �̄✓ > 0.
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If
P

✓0 �̄
✓0q✓

0
= 1, then Eq. (A.31) and the fact that

P
✓0 �

✓0
t�1q

✓0 2 [0, 1] and 0  �✓,g
t�1 

�✓
t�1  1 for all ✓ imply that

�✓,g
t =

 
1�

X

✓0

�✓0

t�1q
✓0

!
�✓,g
t�1 + �✓

t�1q
✓,g 2

"
�✓
t�1q

✓,g, 1�
X

✓0

�✓0

t�1q
✓0 + �✓

t�1q
✓,g

#

and both endpoints of the interval in the r.h.s. converge to �̄✓q✓,g by Claim 4 if
P

✓0 �̄
✓0q✓

0
= 1.

Furthermore, the same assumption implies that �̄✓q✓,g = �̄✓,g, so �✓,g
t ! �̄✓,g.

Now consider the case 0 <
P

✓0 �̄
✓0q✓

0
< 1. (The set ⇥max is non-empty, and since

q 2 R⇥
+ \ {0}, there is ✓+ 2 ⇥max with q✓

+
> 0; by Claim 4, �̄✓0 > 0 for ✓0 2 ⇥max, so in

particular �̄✓+ > 0; but then
P

✓0 �̄
✓0q✓

0 � �̄✓+q✓
+
> 0.) It is convenient to let qt =

P
✓0 �

✓0
t q

✓0

and q̄ =
P

✓0 �̄
✓0q✓

0
= limt!1 qt, where the second equality follows from Claim 4. Thus, Eq.

(A.31) can be written as

�✓,g
t = (1� qt�1)�

✓,g
t�1 + �✓

t�1q
✓,g. (A.38)

In addition, q̄ 2 (0, 1).

We claim that, for all T � 0 and t > T ,

�✓,g
t = �✓,g

T

t�1Y

s=T

(1� qs) + q✓,g
t�1X

s=T

�✓
s

t�1Y

r=s+1

(1� qr). (A.39)

For t = T + 1, this follows from Eq. (A.38). Inductively, assume it holds for t � 1 > T .

Then, by Eq. (A.38) and the inductive hypothesis,

�✓,g
t = (1� qt�1)

"
�✓,g
T

t�2Y

s=T

(1� qs) + q✓,g
t�2X

s=T

�✓
s

t�2Y

r=s+1

(1� qr)

#
+ �✓

t�1q
✓,g =

= �✓,g
T

t�1Y

s=T

(1� qs) + q✓,g
t�1X

s=T

�✓
s

t�1Y

r=s+1

(1� qr),

as claimed.

Fix ✏ > 0 such that �̄✓� ✏ > 0, q̄� ✏ > 0, 1� q̄+ ✏ < 1, and 1� q̄� ✏ > 0. This is possible

because �̄✓ > 0 and q̄ 2 (0, 1), hence 1� q̄ 2 (0, 1).

Since �✓
t ! �̄✓ and qt ! q̄, there is T � 0 such that, for all t > T , �✓

t < �̄✓ + ✏ and

13



qt > q̄ � ✏. Hence, for such t > T , Eq. (A.39) implies that

�✓,g
t �✓,g

T

t�1Y

s=T

(1� q̄ + ✏) + q✓,g
t�1X

s=T

(�̄✓ + ✏)
t�1Y

r=s+1

(1� q̄ + ✏) =

=�✓,g
T (1� q̄ + ✏)t�T + q✓,g(�̄✓ + ✏)

t�1X

s=T

(1� q̄ + ✏)t�1�s =

=�✓,g
T (1� q̄ + ✏)t�T + q✓,g(�̄✓ + ✏)

t�1�TX

s=0

(1� q̄ + ✏)s =

=�✓,g
T (1� q̄ + ✏)t�T + q✓,g(�̄✓ + ✏)

1� (1� q̄ + ✏)t�T

q̄ � ✏
! q✓,g(�̄✓ + ✏)

q̄ � ✏
.

This implies that lim supt �
✓,g
t  q✓,g(�̄✓+✏)

q̄�✏ . Since this must hold for all ✏ > 0, it must be that

lim supt �
✓,g
t  q✓,g�̄✓

q̄ = �̄✓,g.

Similarly, �✓
t ! �̄✓ and qt ! q̄ imply that there is T � 0 such that, for all t > T ,

�✓
t > �̄✓ � ✏ > 0 and qt < q̄ + ✏ < 1. Then

�✓,g
t ��✓,g

T

t�1Y

s=T

(1� q̄ � ✏) + q✓,g
t�1X

s=T

(�̄✓ � ✏)
t�1Y

r=s+1

(1� q̄ � ✏) =

=�✓,g
T (1� q̄ � ✏)t�T + q✓,g(�̄✓ � ✏)

1� (1� q̄ � ✏)t�T

q̄ + ✏
! q✓,g(�̄✓ � ✏)

q̄ + ✏
,

so lim inft �
✓,g
t � q✓,g(�̄✓�✏)

q̄+✏ . Again, since this must hold for all ✏ > 0, lim inft �
✓,g
T � q✓,g�̄✓

q̄ =

�̄✓,g. Hence, �✓,g
t ! �̄✓,g. Q.E.D.

Next, we establish certain basic properties of the symmetric model considered in the

paper. Claims 1 and 3 characterize the set ⇥max for this specification. Claim 2 ensures that

the parameterization satisfies the conditions in Theorem A.1.

Lemma A.1 Assume that, for every ✓ 2 ⇥, �✓
, p✓,m and p✓,f are as defined in Section 2..

Then, for every � 2 (12 , 1), N even, �0 2 (0, 1), and ⇢ 2 (1, 1
�0
):

1. the set of maximizers of �✓ · (p✓,m + p✓,f ) is {✓m, ✓f} if ⇢ < ⇢̄(�, N) and {✓⇤} if ⇢ >

⇢̄(�, N).

2. 0 < �✓ · [p✓,m + p✓,f ]  1.

3. there is N̄ > 0 such that, for all even N � N̄ , the maximizers of �✓ · (p✓,m + p✓,f ) are

✓m and ✓f .
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Recall that ⇢̄(·) is defined in Eq. (10).

Proof: Write

p✓,m = �
PN/2

n=1 ✓n(1� �)N/2�
PN/2

n=1 ✓n · (1� �)
PN

n=N/2+1 ✓n�N/2�
PN

n=N/2+1 ✓n =

=�N/2+
PN/2

n=1 ✓n�
PN

n=N/2+1 ✓n(1� �)N/2+
PN

n=N/2+1 ✓n�
PN/2

n=1 ✓n =

=�N/2(1� �)N/2

✓
�

1� �

◆PN/2
n=1 ✓n�

PN
n=N/2+1 ✓n

.

Similarly

p✓,f = �N/2(1� �)N/2

✓
�

1� �

◆PN
n=N/2+1 ✓n�

PN/2
n=1 ✓n

.

Then F (✓) ⌘ �✓(p✓,m + p✓,f ) equals

�0 ⇢
P

n ✓n/N · �N/2(1� �)N/2

2

4
✓

�

1� �

◆PN/2
n=1 ✓n�

PN
n=N/2+1 ✓n

+

✓
�

1� �

◆�
PN/2

n=1 ✓n+
PN

n=N/2+1 ✓n

3

5 .

Since ⇥ is finite, there exists at least one maximizer ✓ of F (·). We claim that, if ✓

satisfies ✓n = ✓m = 0 for some n 2 {1, . . . , N/2} and m 2 {N/2 + 1, . . . , N}, then it is not a

maximizer. To see this, define ✓0 by ✓0` = ✓` for ` 2 {1, . . . , N} \ {n,m} and ✓0n = ✓0m = 1.

Then
P

n ✓
0
n >

P
n ✓n, so for ⇢ > 1, �✓0 > �✓. On the other hand, the term in square brackets

is the same for ✓ and ✓0 (and it is strictly positive). Hence, ✓ is not a maximizer of F (·). It
follows that the only candidate maximizers of F (·) have either ✓n = 1 for all n = 1, . . . , N/2,

or ✓n = 1 for all n = N/2, . . . , N , or both.

If ✓n = 1 for n = 1, . . . , N/2, then F (✓) = F (✓0), where ✓0n = 1 for n = N/2 + 1, . . . , N

and ✓0n = ✓n+N/2 for n = 1, . . . , N/2. Hence, it is enough to consider ✓ such that ✓n = 1 for

n = N/2+1, . . . , N . Let ⇥f be the collection of such types, and notice that it contains both

✓f (for which ✓fn = 0 for n = 1, . . . , N/2) and ✓⇤ = (1, . . . , 1). We show that the maximizer

of F (·) on ⇥f is either ✓f or ✓⇤.

For each ✓ 2 ⇥f , factoring out all terms not involving
PN/2

n=1 ✓n, F (✓) is proportional to

⇢
PN/2

n=1 ✓n/N ·

2

4
✓

�

1� �

◆PN/2
n=1 ✓n

+

✓
1� �

�

◆PN/2
n=1 ✓n

3

5 .

Hence, F (✓) is proportional to F̃ (
PN/2

n=1 ✓n), where F̃ : [0, 12 ] ! R+ is defined by

F̃ (x) = ⇢x
✓

�

1� �

◆x

+

✓
1� �

�

◆x�
.
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The functions x 7! ⇢
x
N �x =

⇣
⇢

1
N

⌘x
�x =

⇣
⇢

1
N · �

⌘x
, for � = �

1�� 6= 1 and � = 1��
� 6= 1

respectively, are non-constant and exponential, hence strictly convex on [0, 12 ]. Hence, F̃ (·)
is also strictly convex on [0, 12 ], so its maximum is either at 0 or at 1

2 . Correspondingly, F (·)
attains a maximum either at ✓f or at ✓⇤ on the set ⇥f .

To conclude the proof of Claim 1, we calculate the values attained by F (·) at these two

extremes:

F (✓f ) = �0
p
⇢ · [(1� �)N + �N ]

F (✓⇤) = �0⇢ · 2�N/2(1� �)N/2.

Dividing F (✓⇤) and F (✓f ) by �0
p
⇢�N/2(1 � �)N/2 and comparing the resulting quantities,

we conclude that ✓⇤ is (uniquely) optimal i↵

2
p
⇢ >

"✓
�

1� �

◆�N
2

+

✓
1� �

�

◆�N
2

#

or equivalently

⇢ >
1

4

 ✓
1� �

�

◆N
2

+

✓
�

1� �

◆N
2

!2

= ⇢̄(�, N), (A.40)

which is Claim 1.

For Claim 2, we show that (1� �)N + �N  1 and �N/2(1� �)N/2  1
2 ; this is su�cient,

because �0 2 (0, 1) and ⇢ 2 (1, 1
�0
) by assumption, so also �0

p
⇢  �0⇢ < 1.

The function N 7! (1 � �)N + �N is strictly decreasing in N , so it is enough to prove

the claim for N = 2. In this case, (1 � �)2 + �2 = 1 � 2� + �2 + �2 = 1 + 2�(� � 1) < 1,

because � < 1. Similarly, N 7! [�(1� �)]N/2 is decreasing in N , and for N = 2 it reduces to

�(1� �) = �� �2; this is concave and maximized at � = 1
2 , where it takes the value 1

4 < 1
2 .

Finally, for Claim 3, as N ! 1, the first term in the rhs of Eq. (A.40) converges to

zero, but the second diverges to infinity. Thus, for N large, only ✓m and ✓f maximize F (·).
Q.E.D.

We now turn to the proofs of the main Propositions and Corollaries in the text.

Proof of Proposition 3 and Corollary 1: convergence of (�t)t�0, (�m
t )t�0 and (�f

t )t�0

follows from Theorem A.1 and Claim 2 of Lemma A.1. Parts (a) and (b) follow from Claim

1 in Lemma A.1 and Claim 4 in Theorem A.1. Corollary 1 follows from Claim 3 in Lemma

A.1. Q.E.D.
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Proposition 2 follows from Proposition 3.

Proof of Proposition 4: Fix ✓ 2 ⇥, and define ✓sym by ✓symn = ✓N+1�n for all n =

1, . . . , N . (Notice that, for some ✓, it may be the case that ✓sym = ✓.) We first claim that

a✓,mt + a✓
sym,m

t � a✓,ft + a✓
sym,f

t . (A.41)

Notice that, if ✓sym = ✓, the above inequality just says that a✓,mt � a✓,ft .

Letm0 =
PN/2

n=1 ✓ andm1 =
PN

n=N/2+1 ✓n. By definition, p
✓,m = �m0(1��)N/2�m0�N/2�m1(1�

�)m1 = �(m0�m1)+N/2(1��)N/2�(m0�m1) = [�(1��)]N/2
⇣

�
1��

⌘m0�m1

, and similarly p✓
sym,m =

[�(1��)]N/2
⇣

1��
�

⌘m0�m1

. Moreover, since pf is defined with the roles of � and 1�� reversed,

p✓,f = p✓
sym,m and p✓,m = p✓

sym,f , so p✓,m + p✓,f = p✓
sym,m + p✓

sym,f . Finally, by construction

�✓ = �✓sym .

Suppose that m0 � m1. Since � > 1
2 , p

✓,m � p✓
sym,m. At time 0 we thus have �✓

0 = p✓,m �
p✓

sym,m = �✓sym
0 > 0. Then, since q✓ = �✓(p✓,m + p✓,f ) + �✓sym(p✓

sym,m + p✓
sym,f ) = q✓

sym
, by

part 3(a) of Theorem A.1, for every t > 0, �✓
t

�✓
t�1

= �✓sym
t

�✓sym
t�1

, and hence �✓
t

�✓sym
t

=
�✓
t�1

�✓sym
t�1

= �✓
0

�✓sym
0

� 1.

Thus, �✓
t � �✓sym

t for all t > 0 as well. Finally, letting �̄ ⌘ �✓sym = �✓, for every t � 1,

a✓t = a✓,mt + a✓,ft = �̄�✓
t�1(p

✓,m + p✓,f ) � �̄�✓sym

t�1 (p
✓sym,m + p✓

sym,f ) = a✓
sym,m

t + a✓
sym,f

t = a✓
sym

t .

All the inequalities in the above paragraph are strict if m0 > m1; they are reversed if

m0  m1; and hold as equalities if m0 = m1.

Now, regardless of the values of m0 and m1,

a✓,mt + a✓
sym,m

t � a✓,ft + a✓
sym,f

t

, �̄(�✓
t�1p

✓,m + �✓sym

t�1 p✓
sym,m) � �̄(�✓

t�1p
✓,f + �✓sym

t�1 p✓
sym,f )

, �✓
t�1[p

✓,m � p✓,f ] � �✓sym

t�1 [p
✓sym,f � p✓

sym,m]

, [�✓
t�1 � �✓sym

t�1 ] · [p✓,m � p✓,f ] � 0,

where the last step follows from p✓,m = p✓
sym,f and p✓,f = p✓

sym,m.

If m0 = m1, then both terms in square brackets equal zero, so equality obtains; in

particular, this is true if ✓ = ✓sym. If m0 > m1, then both terms are positive, if m0 < m1,

then both terms are negative. Thus, in any event, the last inequality, and hence Eq. (A.41),

holds; furthermore, if ✓ = ✓sym, then a✓,mt = a✓,ft .
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Now fix L 2 {0, . . . , N}. Then
X

✓:
P

n ✓n=L

a✓,mt =
X

✓:
P

n ✓n=L,✓=✓sym

a✓,mt +
X

✓:
P

n ✓n=L,✓ 6=✓sym

a✓,mt =

=
X

✓:
P

n ✓n=L,✓=✓sym

a✓,mt +
1

2

X

✓:
P

n ✓n=L,✓ 6=✓sym

[a✓,mt + a✓
sym,m

t ] �

�
X

✓:
P

n ✓n=L,✓=✓sym

a✓,ft +
1

2

X

✓:
P

n ✓n=L,✓ 6=✓sym

[a✓,ft + a✓
sym,f

t ] =

=
X

✓:
P

n ✓n=L

a✓,ft .

The second equality follows from the observation that, restricting attention to types ✓ with
P

n ✓n = L, also
P

n ✓
sym
n = L, so that adding a✓,mt + a✓

sym,m
t over all ✓ with ✓ 6= ✓sym counts

each type twice. The inequality follows from Eq. (A.41), which in particular implies that

a✓,mt = a✓,ft if ✓ = ✓sym. This inequality is strict if the second summation is non-empty, i.e., if

there is ✓ with
P

n ✓n = L and ✓n 6= ✓N+1�n for some n, because the latter condition implies

✓ 6= ✓sym. Finally, the last equality follows by repeating the first two steps backwards, for

F -group researchers. Q.E.D

Proof of Proposition 5: We begin with a preliminary result.

Lemma A.2 For all parameter values and initial conditions, and for all ✓ 2 ⇥ and t � 1,

�✓
t

�✓
t�1

= (1� at) + �✓(p✓,m + p✓,f );

and for t � 2,
a✓t
a✓t�1

=
a✓,mt

a✓,mt�1

=
a✓,ft

a✓,ft�1

=
�✓
t�1

�✓
t�2

.

Proof: From Eq. (7), �✓
t = �✓,m

t + �✓,f
t = (�✓,m

t�1 + �✓,f
t�1)(1 � at) + �✓(p✓,m + p✓,f ), which

yields the first equation because �✓
⌧ > 0 for all ✓ and ⌧ .

From Eq. (6), for t � 2,
a✓,gt

a✓,gt�1

=
�✓
t�1�

✓p✓,g

�✓
t�2�

✓p✓,g
=

�✓
t�1

�✓
t�2

;

similarly,
a✓t
a✓t�1

=
�✓
t�1�

✓(p✓,m + p✓,f )

�✓
t�2�

✓(p✓,m + p✓,f )
=

�✓
t�1

�✓
t�2

.

Q.E.D.
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We now prove Proposition 5. ForN = 2 we only have 4 types, ⇥ = {(0, 0), (1, 0), (0, 1), (1, 1)}.
Let aL,g =

P
sum2

n=1✓n=L a
✓,g and agt =

P2
`=0 a

`,g
t . From Proposition 4, for all t, a1,mt > a1,ft ,

a2,mt = a2,ft , and a0,mt = a0,ft . Therefore, amt > aft , which implies that the weight on L = 1 for

accepted M researchers is

a1,mt

amt
= 1� a2,mt + a0,mt

amt
= 1� a2,ft + a0,ft

amt
> 1� a2,ft + a0,ft

aft
=

a1,ft

aft
.

Similarly, amt > aft and a0,mt = a0,ft , a2,mt = a2,ft imply

a0,mt

amt
<

a0,ft

aft
,

a2,mt

amt
<

a2,ft

aft
.

Moreover, we claim that, a2,gt > a0,gt . For t = 0, a2,g0 = a(1,1),g0 = p(1,1),m�(1,1)p(1,1),g >

p(0,0),m�(0,0)p(0,0),g = a(0,0),g0 = a0,g0 , because p(0,0),g = p(1,1),g but �(1,1) > �(0,0). Inductively,

from Lemma A.2,

a2,gt = a(1,1),gt = a(1,1),gt�1 · a
(1,1),g
t

a(1,1),gt�1

= a(1,1,g)t�1

�
1� at�1 + �(1,1)(p(1,1),m + p(1,1),f

�
>

>a(1,1,g)t�1

�
1� at�1 + �(0,0)(p(0,0),m + p(0,0),f

�
> a(0,0,g)t�1

�
1� at�1 + �(0,0)(p(0,0),m + p(0,0),f

�
=

=a(0,0,g)t�1

a(0,0),gt

a(0,0,g)t�1

= a(0,0),gt = a0,gt .

Therefore,

0 <
a0,ft

a1,ft + a2,ft + a0,ft

� a0,mt

a1,mt + a2,mt + a0,mt

=
a0,ft

a1,ft + a2,ft + a0,ft

� a0,ft

a1,mt + a2,mt + a0,mt

<

<

 
a2,ft

a0,ft

!
·
 

a0,ft

a1,ft + a2,ft + a0,ft

� a0,ft

a1,mt + a2,mt + a0,mt

!
=

a2,ft

a1,ft + a2,ft + a0,ft

� a2,ft

a1,mt + a2,mt + a0,mt

=

=
a2,ft

a1,ft + a2,ft + a0,ft

� a2,mt

a1,mt + a2,mt + a0,mt

;

the first inequality follows from a1,ft < a1,mt and a0,ft = a0,mt and a2,ft = a2,mt , the next equality

from a0,mt = a0,ft , the second inequality from a2,ft > a0,ft > 0 and the fact that the di↵erence

of fractions is positive, and the last equality from a2,mt = a2,ft .

The result then follows from a symmetry argument.

E[L|F ] =
0⇥ a0,ft + a1,ft + 2a2,ft

aft

E[L|M ] =
0⇥ a0,mt + a1,mt + 2a2,mt

amt
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which, since a1,gt = 1� a0,gt � a2,gt , implies

E[L|F ] = �1
a0,ft

aft
+ 1 +

a2,ft

aft

E[L|M ] = �1
a0,mt

amt
+ 1 +

a2,mt

amt

It follows that

E[L|F ]� E[L|M ] = �
 
a0,ft

aft
� a0,mt

amt

!
+

 
a2,ft

aft
� a2,mt

amt

!
> 0

Q.E.D

Detailed dynamics of the mass of M and F accepted agents. It is useful to

rewrite Equation (7) for each group g = m, f as follows:

�✓,m
t � �✓,m

t�1 = ��✓,m
t�1 at + �✓,m

t�1�
✓p✓,m + �✓,f

t�1�
✓p✓,m (A.42)

�✓,f
t � �✓,f

t�1 = ��✓,f
t�1 at + �✓,f

t�1�
✓p✓,f + �✓,m

t�1�
✓p✓,f (A.43)

Consider the dynamics of F -researchers in (A.43), for instance. The change in the mass of

F -researchers of type ✓ decreases due to replacement at the rate at, and it then increases

due to the young F -researchers who produce quality research and are matched with referees

from the F group who share their type and hence view them positively (�✓,f
t�1�

✓p✓,f ), plus

the young F -researchers who produce quality research and are matched with M -referees of

their own type (�✓,m
t�1�

✓p✓,f ). The asymmetry between the two dynamics (A.42) and (A.43)

is apparent in the last two terms of each. If ✓ is a type that is more prevalent among M -

researchers—for instance, ✓ = ✓m—then p✓,f will be small while p✓,m will be large. If the

current mass of M -researchers of type ✓ is large, then �✓
t�1�

✓p✓,m will act to further increase

the mass of M -researchers, while the respective term �✓
t�1�

✓p✓,f in the F -group dynamics

will lead to a smaller increase in the mass of type-✓ F -researchers. In particular, if we start

from a situation in which all referees of type ✓ are in M -group, then, while they will accept

some F -researchers of type ✓, they will accept a much larger mass of M -researchers.

This force is at play regardless of the parameter values, and for all types. However, its

implications for the limiting group (im)balance in the population depend upon whether or

not we are in a “meritocratic” scenario. If research characteristics have a limited e↵ect on

the probability of quality research, as in Part (a) of Proposition 3, then ✓m and ✓f are the

only types that survive in the limit. These are also the types for which the di↵erence in

proportions among young M - and F -researchers is greatest. Thus, in the scenario of Part
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(a), the force thus described has the greatest e↵ect, which is further reinforced if initially all

referees are in M -group. The result is that, in the limit, despite the fact that the mass of

young M - and F -researchers appearing at each time t is the same, the referees’ self-image

bias leads to a limiting population in which the majority of scholars are in M group.

By way of contrast, in the meritocratic scenario of Part (b) in Proposition 3, the type

that prevails in the limit is the e�cient one, namely ✓⇤. In our symmetric model, the same

fraction of young M - and F -researchers are of type ✓⇤. Therefore, the e↵ect described above

becomes more and more muted over time. Consequently, in the limit, the mass of M - and

F -scholars is the same.

The following Proposition formalizes the above discussion. We denote by ⇤m
t ⌘

P
✓ �

✓,m
t

and ⇤f
t ⌘

P
✓ �

✓,f
t the total mass of M - and F -scholars at date t; ⇤̄m and ⇤̄f are the

corresponding limiting quantities.

Proposition A.2 Assume that all referees are initially from the M -group, i.e., �0 = pm.

(a) If ⇢ < ⇢̄(�, N), then the limiting masses are

(M -researchers of type ✓m): �̄✓m,m =
(�N)2

(�N + (1� �)N)2
; (A.44)

(F -researchers of type ✓m): �̄✓m,f =
�N (1� �)N

(�N + (1� �)N)2
; (A.45)

(M -researchers of type ✓f ): �̄✓f ,m =
((1� �)N)2

(�N + (1� �)N)2
; (A.46)

(F -researchers of type ✓f ): �̄✓f ,f =
(1� �)N �N

(�N + (1� �)N)2
; (A.47)

with

�̄✓m,m > �̄✓m,f = �̄✓f ,f > �̄✓f ,m (A.48)

In addition, the total mass of M and F researchers are

⇤̄m = 1� ⇤̄f =
1 +

⇣
�

1��

⌘2N

1 +
⇣

�
1��

⌘2N
+ 2

⇣
�

1��

⌘N > 0.5. (A.49)

(b) If ⇢ > ⇢̄(�, N), then �̄✓⇤,m = �̄✓⇤,f = ⇤̄m = ⇤̄f = 1
2 .
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Proof of Proposition 6, A.2 and Corollary 2. For Part (a), since �✓m = �✓f =

�0 (⇢)
N/2 and, by Proposition 3, ⇥max = {✓m, ✓f}, �̄✓̃,m = �✓̃

0p
✓̃,m

�✓m
0 p✓m,m+�✓f

0 p✓f ,m
for ✓̃ 2 ⇥max, and

�̄✓̃,m = 0 otherwise; a similar expression holds for �̄✓̃,f . Equations (A.44) through (A.47)

then follow from the specification of pm and pf . Eq. (13) follows from ⇤̄g = �̄✓m,g + �̄✓f ,g.

Part (b) follows from the fact that, by Proposition 3 part (b), ⇥max = {✓⇤} in this

scenario. Corollary 2 follows from Lemma A.1 Claim (3).

Proposition 6 consists of (b) and the last claim in (a) of Proposition A.2. Q.E.D.

Proof of Proposition 7: let ⇥�1 = ⇥ and t(�1) = 0. Also let �m
0,0 = �m

1,0 = �m
0 ,

�f
0,0 = �f

1,0 = �f
0 , and �0,0 = �1,0 = �m

1,0 + �f
1,0. Finally, let ⇥0 =

n
✓ 2 ⇥ : �✓

1,0 � C
�✓P

o
.

For j � 0, say that Conditions C(j) hold if there is a set ⇥j ✓ ⇥j�1, a period t(j) >

t(j � 1), and for ⌧ = 0, . . . , t(j)� t(j � 1), vectors �m
⌧,j,�

f
⌧,j,�⌧,j 2 R⇥

+ such that

(i) for 0  ⌧  t(j)� t(j � 1), �m
⌧,j = �m

t(j�1)+⌧ , �
f
⌧,j = �f

t(j�1)+⌧ , and �⌧,j = �m
⌧,j + �f

⌧,j;

(ii) for 0  ⌧ < t(j)� t(j � 1), �✓
⌧,j � C

�✓P for all ✓ 2 ⇥j;

(iii) �✓
⌧,j <

C
�✓(P�U) for 0  ⌧  t(j)�t(j�1) and all ✓ 2 ⇥\⇥j, and �✓0

t(j)�t(j�1),j <
C

�✓0 (P�U)

for some ✓0 2 ⇥j.

We claim that, for every k � 0, if either k = 0 or k > 0 and Conditions C(k�1) hold, then

either Conditions C(k) hold as well, with ⇥k ( ⇥k�1 in case k > 0, or else there exist vectors

�m
⌧,k,�

f
⌧,k,�⌧,k 2 R⇥

+ for all ⌧ � 1 such that (i) holds for j = k, and �✓
⌧,j � C

�✓P for all ✓ 2 ⇥k.

In the latter case, if the sequences of such vectors converge, then lim⌧!1 �m
⌧,k = limt!1 �m

t

and similarly for �f
⌧,k and �⌧,k.

Let �✓,g
0,k = �✓,g

t(k�1) for g = f,m; also let �0,k = �m
0,k+�f

0,k. Let ⇥k =
n
✓ 2 ⇥ : �✓

0,k � C
�✓P

o
.

If k = 0, then ⇥0 ✓ ⇥ = ⇥�1. Otherwise, C(k � 1) must hold, so �0,k = �t(k�1) =

�t(k�1)�t(k�2),k�1. By (iii), if ✓ 62 ⇥k�1 then �✓
0,k = �✓

t(k�1)�t(k�2),k�1 <
C

�✓P , so ✓ 62 ⇥k as well;

firthermore, there exists ✓0 2 ⇥k�1 such that �✓0
0,k = �✓0

t(k�1)�t(k�2),k�1 < C
�✓P . Therefore, if

k > 0, then ⇥k ( ⇥k�1.

Define qgk 2 R⇥
+ \{0} for g = f,m by q✓,gk = �✓p✓,g if ✓ 2 ⇥k, and q✓,gk = 0 otherwise. Then

q✓,mk + q✓,fk  1 for all ✓. Consider the sequences (�✓,g
⌧,k)⌧�0 for g = f,m and (�✓

⌧,k)⌧�0 defined

by Eqs. (A.31)–(A.32) for the vectors qfk , q
m
k .

Suppose first that there are ⌧̄ > 0 and ✓0 2 ⇥k such that �✓0
⌧̄ ,k < C

�✓0 (P�U)
. Let t(k) =

t(k � 1) + ⌧̄ . Then, for each group g = f,m, the dynamics in Eqs. (A.31)–(A.32) induced
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by the vectors qfk , q
m
k for the subsequence (�g

⌧,k)⌧=0,...,⌧̄ coincide with those in Eq. (18) for

the subsequences (�g
t )t=t(k�1),...,t(k); thus, (i) holds for j = k. Furthermore, (ii) and the

second part of (iii) hold for j = k by the definition of ⌧̄ . For the first part of (iii) with

j = k, recall that by definition q✓,mk + q✓,fk = 0 for ✓ 2 ⇥ \ ⇥k; hence, for all ✓0 2 ⇥ and all

✓ 2 ⇥ \⇥k, q
✓,m
k + q✓,fk  q✓

0
m,k + q✓

0
f,k. By part 3(a) in Theorem A.1, it must be the case that

�✓
⌧+1,k/�

✓
⌧,k  1: otherwise,

P
✓02⇥ �✓0

⌧+1,k >
P

✓02⇥ �✓0
⌧,k = 1, which contradicts the fact that

�⌧+1,k 2 �(⇥) per Theorem A.1. Since by definition �✓
0,k < C

�✓P for ✓ 62 ⇥k, it follows that

also �✓
⌧,k <

C
�✓P for ⌧ = 0, . . . , ⌧̄ and for any such ✓. Thus, in this case Conditions C(k) hold.

If instead �✓
⌧̄ ,k � C

�✓(P�U) for all ✓ 2 ⇥k, then for each group g = f,m, the dynamics in

Eqs. (A.31)–(A.32) induced by the vectors qm,k, qf,k for the subsequence (�g
⌧,k)⌧�0 coincide

with those in Eq. (18) for the subsequence (�g
t )t�t(k�1). Again, in this case (i) holds for

j = k. This completes the proof of the claim.

Since the set ⇥ is finite, there exists K � 0 such that the induction stops—that is, �✓
⌧̄ ,K �

C
�✓(P�U) for all ✓ 2 ⇥K . Let ⇥max

k = argmax{q✓,mk +q✓,fk : ✓ 2 ⇥}. Since ⇥0 ) ⇥1 ) . . . ) ⇥K ,

by the definition of the vectors qgk for g = f,m, also ⇥max
0 ◆ ⇥max

1 ◆ . . . ◆ ⇥max
K . Moreover,

for every k = 0, . . . , K � 1, and every ✓ 2 ⇥max
k , �✓

⌧+1,k/�
✓
⌧,k � 1 for 0  ⌧ < t(k) � t(k);

otherwise, by part 3(a) in Theorem A.1,
P

✓2⇥ �✓
⌧+1,k <

P
✓2⇥ �✓

⌧,k = 1, which contradicts

the fact that �⌧+1 2 �(⇥) per Theorem A.1.

Now assume that ⇥max
0 ✓ ⇥0. Then, for every ✓ 2 ⇥max

0 ,

C

�✓P
 �✓

0,0  �✓
t(1)�t(0),0 = �✓

0,1  �✓
t(2)�t(1),1 . . .  �✓

0,K ,

so ✓ 2 ⇥k for all k = 0, . . . , K, and thus ⇥max
0 = ⇥max

1 = . . . = ⇥max
K ⌘ ⇥max. In addition,

again by part 3(a) of Theorem A.1, if ✓, ✓0 2 ⇥max, then
�✓
⌧+1,k

�✓
⌧,k

=
�✓0
⌧+1,k

�✓0
⌧,k

for all k = 0, . . . , K�1

and ⌧ = 0, . . . , t(k)� t(k�1), and for k = K and all ⌧ � 0. Rearranging terms,
�✓
⌧+1,k

�✓0
⌧+1,k

=
�✓
⌧,k

�✓0
⌧,k

for such k and ⌧ . Therefore, (i) in Conditions C(0)...C(K) imply that

�✓
0,K

�✓0
0,K

=
�✓
t(K�1)

�✓0
t(K�1)

=
�✓
t(K�1)�t(K�2),K�1

�✓0
t(K�1)�t(K�2),K�1

=
�✓
0,K�1

�✓0
0,K�1

= . . . =
�✓
t(0)�t(�1),0

�✓0
t(0)�t(�1),0

=
�✓
0,0

�✓0
0,0

=
�✓
0

�✓0
0

.

Therefore, for ✓ 2 ⇥max = ⇥max
K , from Theorem A.1 part (4),

�̄✓ = �̄✓
K =

�✓
0,KP

✓02⇥max �✓0
0,K

=
1

P
✓02⇥max

�✓0
0,K

�✓
0,K

=
1

P
✓02⇥max

�✓0
0

�✓
0

=
�✓
0P

✓02⇥max �✓0
0

. (A.50)
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Similarly, for ✓ 2 ⇥max, part (5) in the same Theorem implies that

�̄✓,m = �̄✓,m
K =

�✓
0,Kq

✓,m
KP

✓02⇥max �✓0
0,Kq

✓0
K

=
q✓,mK

P
✓02⇥max

�✓0
0,K

�✓
0,K

q✓
0

K

=
q✓,mK

P
✓02⇥max

�✓0
0

�✓
0
q✓

0
K

=
�✓
0q

✓,m
KP

✓02⇥max �✓0
0 q

✓0
K

,

(A.51)

and analogously for �̄✓,f .

Statements (a.1)–(b) now follow. Recall that �0 = pm. In (a.1), by assumption ⇥max =

⇥max
0 = {✓m, ✓f} ✓ ⇥0. Substituting �✓m

0 = �N and �✓f
0 = (1 � �)N in Eq. (A.50) yields

�̄✓m = �N

�N+(1��)N . Similarly, substituting for qgK , g = f,m, and qK = qfK + qmK in Eq. (A.51)

yields the same expression for �̄✓m,m as in Proposition 3, because ✓ 2 ⇥max implies that

q✓,gK = �✓p✓,g; ditto for �̄✓m,f , �̄✓f ,m and �̄✓f ,f , and hence for ⇤̄m.

For (a.2), ⇥max = ⇥max
0 = {✓m}. This immediately implies that �̄✓m = �̄✓m

K = 1. Further-

more, from Eq. (A.51), ⇤̄m = �̄m,✓m = �̄m,✓m

K = �✓mp✓
m,m

�✓m (p✓m,m+p✓m,f )
= p✓

m,m

p✓m,m+p✓m,f = �N

�N+(1��)N ,

as asserted. Finally, we compare this quantity with its counterpart in Eq. (13):

1 +
⇣

�
1��

⌘2N

1 +
⇣

�
1��

⌘2N
+ 2

⇣
�

1��

⌘N =
(1� �)2N + �2N

[(1� �)N + �N ]2
<

<
(1� �)N�N + �2N

[(1� �)N + �N ]2
=

(1� �)N + �N

(1� �)N + �N
· �N

(1� �)N + �N
=

�N

(1� �)N + �N
= ⇤̄m,

where the inequality follows from the assumption that � > 0.5.

The analysis of (b) is analogous to that of (a.2), with ✓⇤ in lieu of ✓m; in this case,

p✓
⇤,m = p✓

⇤,f = �N/2(1� �)N/2, so ⇤̄m = �̄✓⇤,m = 1
2 .

The statements about t✓ for ✓ 62 ⇥max follow from the construction of t(0), . . . , t(K).

Q.E.D.

Proof of Proposition 8. For part 1, the key step is analogous to the proof of Proposition

4, modified to allow for endogenous entry. Let m0 =
PN/2

n=1 ✓ and m1 =
PN

n=N/2+1 ✓n.

By assumption, m0 > m1. By definition, p✓,m = �m0(1 � �)N/2�m0�N/2�m1(1 � �)m1 =

�(m0�m1)+N/2(1� �)N/2�(m0�m1) = [�(1� �)]N/2
⇣

�
1��

⌘m0�m1

, and similarly p✓
sym,m = [�(1�

�)]N/2
⇣

1��
�

⌘m0�m1

; since � > 1
2 , p✓,m > p✓

sym,m. At time 0 we thus have �✓
0 = p✓,m >

p✓
sym,m = �✓sym

0 . Moreover, since pf is defined with the roles of � and 1 � � reversed,

p✓,f = p✓
sym,m < p✓,m = p✓

sym,f .

Since �✓sym = �✓, it follows that at time 0, if �✓sym
0 > C

�✓symP
, then also �✓

0 > C
�✓P . In

addition, p✓m+p✓f = p✓
sym

m +p✓
sym

f . Thus, in the notation of Proposition 7, for t < min(t✓, t✓
sym

),
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both ✓ and ✓sym apply, and applying part 3(a) of Theorem A.1 to the relevant subsequence

of (�t)t�0 as in the proof of Proposition 7, �✓
t

�✓
t�1

= �✓sym
t

�✓sym
t�1

, and hence �✓
t

�✓sym
t

=
�✓
t�1

�✓sym
t�1

= �✓
0

�✓sym
0

> 1.

Thus, �✓
t > �✓sym

t , so again, if �✓sym
t > C

�✓symP
, then also �✓

t >
C

�✓P , i.e., t
✓ � t✓

sym
. In particular,

if the inequality is strict and t✓
sym

< t < t✓, then researchers of type ✓ will apply at time t,

but those of type ✓sym will not.

For part 2, We have

Am
t � Af

t =
X

✓:�✓
t�

C
�✓

P

p✓,m �
X

✓:�✓
t�

C
�✓

P

p✓,f =

=
X

✓

p✓,m1�✓
t�

C
�✓

P �
X

✓

p✓,f1�✓
t�

C
�✓

P =

=
X

✓

p✓,m1�✓
t�

C
�✓

P �
X

✓

p✓
sym,f1�✓sym

t � C
�✓

sym P =

=
X

✓

p✓,m
✓
1�✓

t�
C
�✓

P � 1�✓sym
t � C

�✓
sym P

◆
=

=
X

✓:
PN/2

n=1 ✓n>
PN

n=N/2+1 ✓n

p✓,m
✓
1�✓

t�
C
�✓

P � 1�✓sym
t � C

�✓
sym P

◆
+

+
X

✓:
PN/2

n=1 ✓n=
PN

n=N/2+1 ✓n

p✓,m
✓
1�✓

t�
C
�✓

P � 1�✓sym
t � C

�✓
sym P

◆
+

+
X

✓:
PN/2

n=1 ✓n<
PN

n=N/2+1 ✓n

p✓,m
✓
1�✓

t�
C
�✓

P � 1�✓sym
t � C

�✓
sym P

◆
=

=
X

✓:
PN/2

n=1 ✓n>
PN

n=N/2+1 ✓n

p✓,m
✓
1�✓

t�
C
�✓

P � 1�✓sym
t � C

�✓
sym P

◆
+

+
X

✓:
PN/2

n=1 ✓n>
PN

n=N/2+1 ✓n

p✓
sym,m

✓
1�✓sym

t � C
�✓

sym P � 1�✓
t�

C
�✓

P

◆
=

=
X

✓:
PN/2

n=1 ✓n>
PN

n=N/2+1 ✓n

(p✓�p✓
sym

m ,m)

✓
1�✓

t�
C
�✓

P � 1�✓sym
t � C

�✓
sym P

◆
� 0.

The third equality follows from the fact that ✓ 7! (1�✓n)Nn=1 is a bijection. The fourth follows

from the fact that p✓
sym,f = p✓,f . To obtain the fifth, we break up the sum into types ✓ with

more (resp. as many, resp. fewer) characteristics between 1 and N/2 than between N/2 + 1

and N . For the sixth, observe that if a type ✓ has the same number of features between 1

and N/2 and between N/2 + 1 and N , then p✓,m = p✓
sym,m and so �✓

0 = �✓sym
0 ; arguing as

in Proposition 8, �✓
t = �✓sym

t for all t � 0 (note that as soon as one type stops applying, so

does the other); but then, since also �✓ = �✓sym , the term in parentheses for such types is
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identially zero. In addition, we express the sum over ✓’s for which
PN/2

n=1 ✓n <
PN

n=N/2+1 ✓n

iterating over types ✓ for which
PN/2

n=1 ✓n >
PN

n=N/2+1 ✓n, but adding up terms corresponding

to the associated symmetric types ✓sym. The seventh equality is immediate. Finally, the

inequality follows because, for ✓ such that
PN/2

n=1 ✓n >
PN

n=N/2+1 ✓n, the term in parentheses

is non-negative by Proposition 8, and in addition p✓>p✓
sym

m ,m. Q.E.D.
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